Self-organizing superimposition algorithm for conformational sampling

نویسندگان

  • Fangqiang Zhu
  • Dimitris K. Agrafiotis
چکیده

A novel self-organizing algorithm for conformational sampling is introduced, in which precomputed conformations of rigid fragments are used as templates to enforce the desired geometry. Starting from completely random coordinates, the algorithm repeatedly superimposes the templates to adjust the positions of the atoms, thereby gradually refining the conformation of the molecule. Combined with pair-wise adjustments of the atoms to resolve steric clashes, conformations that satisfy all geometric constraints can be generated from this procedure. The algorithm is demonstrated to achieve good performance and promises potential applications on more challenging modeling problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Robust QSAR

Quantitative Structure Activity Relationship (QSAR) is a term describing a variety of approaches that are of substantial interest for chemistry. This method can be defined as indirect molecular design by the iterative sampling of the chemical compounds space to optimize a certain property and thus indirectly design the molecular structure having this property. However, modeling the interactions...

متن کامل

An automatic tool to analyze and cluster macromolecular conformations based on self-organizing maps

MOTIVATION Sampling the conformational space of biological macromolecules generates large sets of data with considerable complexity. Data-mining techniques, such as clustering, can extract meaningful information. Among them, the self-organizing maps (SOMs) algorithm has shown great promise; in particular since its computation time rises only linearly with the size of the data set. Whereas SOMs ...

متن کامل

Kohonen Self Organizing for Automatic Identification of Cartographic Objects

Automatic identification and localization of cartographic objects in aerial and satellite images have gained increasing attention in recent years in digital photogrammetry and remote sensing. Although the automatic extraction of man made objects in essence is still an unresolved issue, the man made objects can be extracted from aerial photos and satellite images. Recently, the high-resolution s...

متن کامل

NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map

Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...

متن کامل

A Rule Extractor for Diagnosing the Type 2 Diabetes Using a Self-organizing Genetic Algorithm

Introduction: Constructing medical decision support models to automatically extract knowledge from data helps physicians in early diagnosis of disease. Interpretability of the inferential rules of these models is a key indicator in determining their performance in order to understand how they make decisions, and increase the reliability of their output. Methods: In this study, an automated hyb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of computational chemistry

دوره 28 7  شماره 

صفحات  -

تاریخ انتشار 2007